The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

نویسندگان

  • Haiqing Fu
  • Melvenia M Martin
  • Marie Regairaz
  • Liang Huang
  • Yang You
  • Chi-Mei Lin
  • Michael Ryan
  • RyangGuk Kim
  • Tsutomu Shimura
  • Yves Pommier
  • Mirit I Aladjem
چکیده

The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81-deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81-deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mus81 endonuclease localizes to nucleoli and to regions of DNA damage in human S-phase cells.

Mus81 is a highly conserved substrate specific endonuclease. Human Mus81 cleaves Holliday junctions, replication forks, and 3' flap substrates in vitro, suggesting a number of possible in vivo functions. We show here that the abundance of human Mus81 peaks in S-phase and remains high in cells that have completed DNA replication and that Mus81 is a predominantly nuclear protein, with super accum...

متن کامل

Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease.

The RecQ DNA helicases, human BLM and yeast Sgs1, form a complex with topoisomerase III (Top3) and are thought to act during DNA replication to restart forks that have paused due to DNA damage or topological stress. We have shown previously that yeast cells lacking SGS1 or TOP3 require MMS4 and MUS81 for viability. Here we show that Mms4 and Mus81 form a heterodimeric structure-specific endonuc...

متن کامل

Temporal regulation of the Mus81-Mms4 endonuclease ensures cell survival under conditions of DNA damage

The structure-specific Mus81-Eme1/Mms4 endonuclease contributes importantly to DNA repair and genome integrity maintenance. Here, using budding yeast, we have studied its function and regulation during the cellular response to DNA damage and show that this endonuclease is necessary for successful chromosome replication and cell survival in the presence of DNA lesions that interfere with replica...

متن کامل

The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis.

Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or togeth...

متن کامل

BLM helicase facilitates Mus81 endonuclease activity in human cells.

Bloom syndrome is a rare, autosomal recessive inherited disorder in humans. The product of the Bloom syndrome mutated gene, designated BLM, is a member of the RecQ helicase family. BLM has been proposed to function at the interface of replication and recombination, and to facilitate the repair of DNA damage. Here, we report in vivo physical interaction and colocalization of BLM and a DNA struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015